

RENEWABLE HYDROGEN FUEL CELL COLLABORATIVE MIDWEST HYDROGEN CENTER OF EXCELLENCE

SARTA Fuel Cell Bus - Columbus, Ohio

Minnesota Hydrogen Economy Collaborative July 8, 2021

Andrew R. Thomas Mark Henning RHFCC/MHCoE (SARTA)

Energy Policy Center Levin College of Urban Affairs Cleveland State University

Public Awareness/Outreach Activities

Education

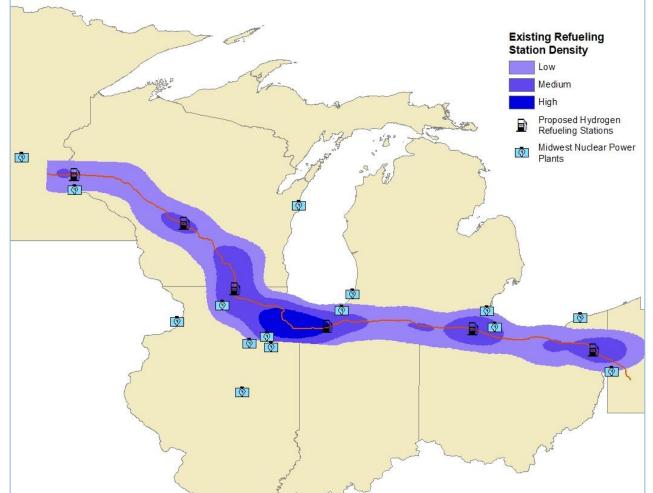
- Middle School outreach program
 - Teacher and student education
 - Renewable energy kits
- University outreach
 - Presentations, events
 - Bus route rides
- Training
 - Bus driver
 - Mechanics
 - Operations

Community

- "Borrow A Bus" program
 - Supported by El Dorado and BAE
- Educate legislators, policy makers
- Present at public forums, trade shows
- Media outreach, including website, social media outlets

Research by RHFCC/MHCoE

Hydrogen


- Economics of carbon capture for hydrogen refueling infrastructure
- H2 Infrastructure planning for Midwest
- Fuel cell supply chain development
- Survey of interest in FCE heavy duty trucking
- Roadmap for adoption

Transit

- Bus Procurement strategies
- Cold weather effects on fuel cell and battery electric buses
- Onsite hydrogen strategies for transit
- Microgrid strategies for transit
- Hydrogen bus performance metrics

180/90 Long Haul Corridor H2 Refueling Plan

Strategic Plan:

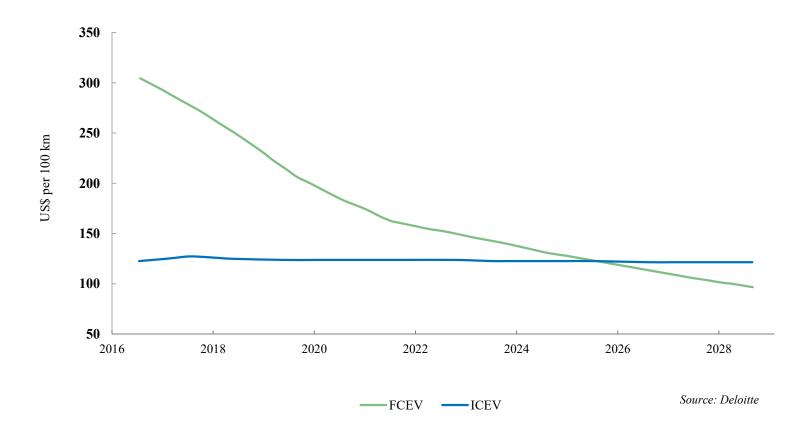
- Build stations at or near existing truck stops
- Stations placed within FCE truck range
- Re-purpose nuclear energy from grid to H2

FCEV Fleets – First Adopters

- Stark Area Regional Transit Authority
 - Canton, Ohio
 - 20 FCE buses and paratransit vans in operation
 - El Dorado frame, Ballard cells
 - Third largest operator of fuel cell buses in U.S.
- Advantages

Levin

Urban.csuohio.edu


- Nearly 200 miles per day range
- Refueling time takes 20 minutes
- Fuel cost similar to diesel
- Do not see large range drop off in winter
 - One for one replacement of diesel
- Challenges:
 - Cost: Currently over \$1 mm/bus.
 - Diesel bus is \$450,000.
 - Refueling infrastructure over \$1 mm.
 - Operations: Training of mechanics, access to parts

SARTA Hydrogen Refueling Station

Levin Urban.csuohio.edu

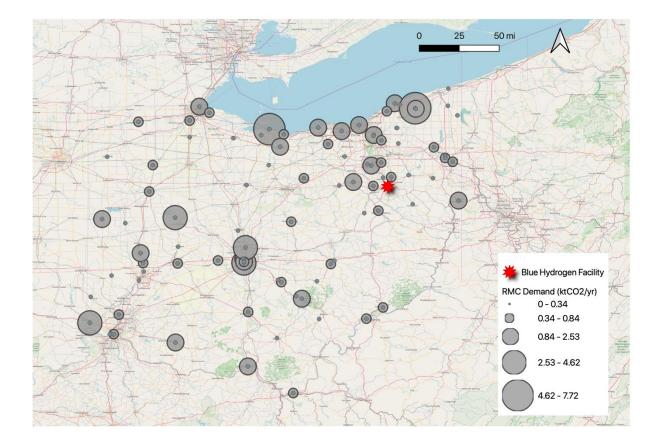
Transit as Hydrogen Economy Driver US Total Projected Cost of Ownership for a Bus (\$/100 km)

Levin Urban.csuohio.edu Comparison of Cost and Carbon Intensity for Various Small-Scale Hydrogen Production Options at SARTA.

Method	Cost (\$/kg H ₂)	Carbon Intensity (kgCO ₂ e/kg H ₂)
SMR: delivered via LH ₂ ^a	5.93	9.81 ^b
SMR: onsite, no capture	3.22	8.98
SMR: RNG, no capture	4.49	$2.22 - 5.32^{\circ}$
SMR: onsite with capture (blue)		
- With geological storage	3.65	2.44
- with EOR/ECOF	3.52	4.17
- with EOR/MCOF	3.47	4.40
- with RMC	3.27	2.44
Electrolysis (green) – no grid	7.43	2.58

• This hydrogen is compressed and liquified in Sarnia, Ontario, Canada, and delivered ca. 270 miles in LH₂ tanker trailers to SARTA. Importantly, this method of delivery arrives under pressure, and little or no additional on-site hydrogen compression is required for storage. This cost needs to be accounted for in a true apples to apples comparison.

- The incremental carbon footprint assumes negligible boil-off losses at the Sarnia trailer refill and during transit, and emissions of 220 gCO₂e/tonne/mile due to fuel consumption.
- The lower bound represents WWTP RNG at 19.34 gCO₂e/MJ and the upper bound represents landfill RNG at 46.42 gCO₂e/MJ.


Potential CO2 Markets in Ohio and Pennsylvania

Process	2017 Estimated Demand (ktCO2/yr)	Number of Sites	
	Ohio		
Urea Manufacturing	315.4	1	
Food and Beverage	73.7	56	
Refrigeration	38.6	111	
Methanol	16.0	2	
Plastic and Polymers	3.8	9	
Pennsylvania			
Food and Beverage	90.2	63	
Refrigeration	42.5	143	
Chemical Production	16.4	4	
Plastic and Polymers	6.5	12	
Miscellaneous	0.4	2	

Levin Urban.csuohio.edu

Ready Mix Concrete Locations in Ohio

Symbolized by Potential Annual CO2 Demand for the Purpose of Incorporation into Mixed Concrete Product.

Levin Renewable Hydrogen Fuel Cell Collaborative Urban.csuohio.edu Midwest Hydrogen Center of Excellence

Andrew R. Thomas and Mark Henning Energy Policy Center Levin College of Urban Affairs Cleveland State University <u>a.r.thomas99@csuohio.edu</u> <u>m.d.henning@csuohio.edu</u> 216 687 9304

http://www.midwesthydrogen.org/

https://www.sartaonline.com/